main_pipeline_no_lidar.py 7.81 KB
Newer Older
Clément Pinard's avatar
Clément Pinard committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
import numpy as np
from wrappers import Colmap, FFMpeg, PDraw, ETH3D, PCLUtil
from cli_utils import set_argparser, print_step, print_workflow
from video_localization import localize_video, generate_GT
import meshlab_xml_writer as mxw
import prepare_images as pi
import prepare_workspace as pw


def main():
    args = set_argparser().parse_args()
    env = vars(args)
    if args.show_steps:
        print_workflow()
        return
    if args.add_new_videos:
        args.skip_step += [1, 2, 4, 5, 6]
    if args.begin_step is not None:
        args.skip_step += list(range(args.begin_step))
    pw.check_input_folder(args.input_folder, with_lidar=False)
    args.workspace = args.workspace.abspath()
    pw.prepare_workspace(args.workspace, env, with_lidar=False)
    colmap = Colmap(db=env["thorough_db"],
                    image_path=env["image_path"],
                    mask_path=env["mask_path"],
                    dense_workspace=env["dense_workspace"],
                    binary=args.colmap,
                    verbose=args.verbose,
                    logfile=args.log)
    env["colmap"] = colmap
    ffmpeg = FFMpeg(args.ffmpeg, verbose=args.verbose, logfile=args.log)
    env["ffmpeg"] = ffmpeg
    pdraw = PDraw(args.nw, verbose=args.verbose, logfile=args.log)
    env["pdraw"] = pdraw
    eth3d = ETH3D(args.eth3d, args.raw_output_folder / "Images", args.max_occlusion_depth,
                  verbose=args.verbose, logfile=args.log)
    env["eth3d"] = eth3d
    pcl_util = PCLUtil(args.pcl_util, verbose=args.verbose, logfile=args.log)
    env["pcl_util"] = pcl_util
    env["videos_list"] = sum((list((args.input_folder/"Videos").walkfiles('*{}'.format(ext))) for ext in args.vid_ext), [])
    no_gt_folder = args.input_folder/"Videos"/"no_groundtruth"
    if no_gt_folder.isdir():
        env["videos_to_localize"] = [v for v in env["videos_list"] if not str(v).startswith(no_gt_folder)]
Clément Pinard's avatar
Clément Pinard committed
44
45
    else:
        env["videos_to_localize"] = env["videos_list"]
Clément Pinard's avatar
Clément Pinard committed
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75

    i = 1
    if i not in args.skip_step:
        print_step(i, "Pictures preparation")
        env["existing_pictures"] = pi.extract_pictures_to_workspace(**env)
    else:
        env["existing_pictures"] = sum((list(env["image_path"].walkfiles('*{}'.format(ext))) for ext in env["pic_ext"]), [])

    i += 1
    if i not in args.skip_step:
        print_step(i, "Extracting Videos and selecting optimal frames for a thorough scan")
        env["videos_frames_folders"] = pi.extract_videos_to_workspace(fps=args.lowfps, **env)
    else:
        env["videos_frames_folders"] = {}
        by_name = {v.namebase: v for v in env["videos_list"]}
        for folder in env["video_path"].walkdirs():
            video_name = folder.basename()
            if video_name in by_name.keys():
                env["videos_frames_folders"][by_name[video_name]] = folder
    env["videos_workspaces"] = {}
    for v, frames_folder in env["videos_frames_folders"].items():
        env["videos_workspaces"][v] = pw.prepare_video_workspace(v, frames_folder, **env)

    i += 1
    if i not in args.skip_step:
        print_step(i, "First thorough photogrammetry")
        env["thorough_recon"].makedirs_p()
        colmap.extract_features(image_list=env["video_frame_list_thorough"], more=args.more_sift_features)
        colmap.index_images(vocab_tree_output=env["indexed_vocab_tree"], vocab_tree_input=args.vocab_tree)
        colmap.match(method="vocab_tree", vocab_tree=env["indexed_vocab_tree"])
Clément Pinard's avatar
Clément Pinard committed
76
77
78
        colmap.map(output=env["thorough_recon"], multiple_models=env["multiple_models"])
        thorough_model = pi.choose_biggest_model(env["thorough_recon"])
        colmap.adjust_bundle(thorough_model, thorough_model,
Clément Pinard's avatar
Clément Pinard committed
79
                             num_iter=100, refine_extra_params=True)
Clément Pinard's avatar
Clément Pinard committed
80
81
    else:
        thorough_model = pi.choose_biggest_model(env["thorough_recon"])
Clément Pinard's avatar
Clément Pinard committed
82
83
84
85
86
87
88
89

    i += 1
    if i not in args.skip_step:
        print_step(i, "Alignment of photogrammetric reconstruction with GPS")
        env["georef_recon"].makedirs_p()
        colmap.align_model(output=env["georef_recon"],
                           input=env["thorough_recon"] / "0",
                           ref_images=env["georef_frames_list"])
Clément Pinard's avatar
Clément Pinard committed
90
91
92
93
        if not (env["georef_frames_list"]/"images.bin").isfile():
            # GPS alignment failed, possibly because not enough GPS referenced images
            # Copy the original model without alignment
            (env["thorough_recon"] / "0").merge_tree(env["georef_full_recon"])
Clément Pinard's avatar
Clément Pinard committed
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
        env["georef_recon"].merge_tree(env["georef_full_recon"])
    if args.inspect_dataset:
        colmap.export_model(output=env["georef_recon"] / "georef_sparse.ply",
                            input=env["georef_recon"])
        georef_mlp = env["georef_recon"]/"georef_recon.mlp"
        mxw.create_project(georef_mlp, [env["georefrecon_ply"]])
        colmap.export_model(output=env["georef_recon"],
                            input=env["georef_recon"],
                            output_type="TXT")
        eth3d.inspect_dataset(scan_meshlab=georef_mlp,
                              colmap_model=env["georef_recon"],
                              image_path=env["image_path"])

    i += 1
    if i not in args.skip_step:
        print_step(i, "Video localization with respect to reconstruction")
        for j, v in enumerate(env["videos_to_localize"]):
            print("\n\nNow working on video {} [{}/{}]".format(v, j + 1, len(env["videos_to_localize"])))
            video_env = env["videos_workspaces"][v]
            localize_video(video_name=v,
                           video_frames_folder=env["videos_frames_folders"][v],
                           step_index=i, video_index=j+1,
                           num_videos=len(env["videos_to_localize"]),
                           **video_env, **env)

    i += 1
    if i not in args.skip_step:
        print_step(i, "Full reconstruction point cloud densificitation")
        env["georef_full_recon"].makedirs_p()
        colmap.undistort(input=env["georef_full_recon"])
        colmap.dense_stereo()
        colmap.stereo_fusion(output=env["georefrecon_ply"])

    i += 1
    if i not in args.skip_step:
        print_step(i, "Reconstruction cleaning")
        filtered = env["georefrecon_ply"].stripext() + "_filtered.ply"
        pcl_util.filter_cloud(input_file=env["georefrecon_ply"],
                              output_file=filtered,
                              knn=args.SOR[0], std=args.SOR[1])
        mxw.create_project(env["aligned_mlp"], [filtered])

    i += 1
    if i not in args.skip_step:
        print_step(i, "Occlusion Mesh computing")
        colmap.delaunay_mesh(env["occlusion_ply"], input_ply=env["georefrecon_ply"])
Clément Pinard's avatar
Clément Pinard committed
140
141
        if args.splats:
            eth3d.create_splats(env["splats_ply"], env["georefrecon_ply"].stripext() + "_filtered.ply", env["occlusion_ply"], threshold=args.splat_threshold)
Clément Pinard's avatar
Clément Pinard committed
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168

    if args.inspect_dataset:
        eth3d.inspect_dataset(scan_meshlab=env["aligned_mlp"],
                              colmap_model=env["georef_recon"],
                              image_path=env["image_path"])
        eth3d.inspect_dataset(scan_meshlab=env["aligned_mlp"],
                              colmap_model=env["georef_recon"],
                              image_path=env["image_path"],
                              occlusions=env["occlusion_ply"],
                              splats=env["splats_ply"])

    i += 1
    if i not in args.skip_step:
        print_step(i, "Groud Truth generation")
        for j, v in enumerate(env["videos_to_localize"]):
            video_env = env["videos_workspaces"][v]

            generate_GT(video_name=v, GT_already_done=video_env["GT_already_done"],
                        video_index=j+1,
                        num_videos=len(env["videos_to_localize"]),
                        metadata=video_env["metadata"],
                        global_registration_matrix=np.eye(4),
                        **video_env["output_env"], **env)


if __name__ == '__main__':
    main()