videos_to_colmap.py 20.1 KB
Newer Older
Clement Pinard's avatar
Clement Pinard committed
1
2
3
4
5
6
from colmap_util import read_model as rm, database as db
import anafi_metadata as am
from wrappers import FFMpeg, PDraw
from sklearn.cluster import KMeans
from sklearn.metrics import pairwise_distances_argmin_min
from argparse import ArgumentParser, ArgumentDefaultsHelpFormatter
nicolas's avatar
nicolas committed
7
from edit_exif import set_gps_location
Clement Pinard's avatar
Clement Pinard committed
8
9
10
11
12
from path import Path
import pandas as pd
import numpy as np
from pyproj import Proj
from tqdm import tqdm
13
import tempfile
Clement Pinard's avatar
Clement Pinard committed
14
15
16
17
18
19
20
21
22

parser = ArgumentParser(description='Take all the drone videos of a folder and put the frame '
                                    'location in a COLMAP file for vizualisation',
                        formatter_class=ArgumentDefaultsHelpFormatter)

parser.add_argument('--video_folder', metavar='DIR',
                    help='path to videos', type=Path)
parser.add_argument('--system', default='epsg:2154')
parser.add_argument('--centroid_path', default=None)
Clément Pinard's avatar
Clément Pinard committed
23
parser.add_argument('--colmap_img_root', metavar='DIR', type=Path)
Clement Pinard's avatar
Clement Pinard committed
24
25
26
27
28
29
30
parser.add_argument('--output_format', metavar='EXT', default="bin")
parser.add_argument('--vid_ext', nargs='+', default=[".mp4", ".MP4"])
parser.add_argument('--pic_ext', nargs='+', default=[".jpg", ".JPG", ".png", ".PNG"])
parser.add_argument('--nw', default='',
                    help="native-wrapper.sh file location")
parser.add_argument('--fps', default=1, type=int,
                    help="framerate at which videos will be scanned WITH reconstruction")
31
parser.add_argument('--total_frames', default=200, type=int)
Clement Pinard's avatar
Clement Pinard committed
32
33
34
parser.add_argument('--orientation_weight', default=1, type=float)
parser.add_argument('--resolution_weight', default=1, type=float)
parser.add_argument('--save_space', action="store_true")
Clément Pinard's avatar
Clément Pinard committed
35
36
parser.add_argument('--thorough_db', type=Path)
parser.add_argument('-v', '--verbose', action="count", default=0)
Clement Pinard's avatar
Clement Pinard committed
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55


def world_coord_from_frame(frame_qvec, frame_tvec):
    '''
    frame_qvec is written in the NED system (north east down)
    frame_tvec is already is the world system (east norht up)
    '''
    world2NED = np.float32([[0, 1, 0],
                            [1, 0, 0],
                            [0, 0, -1]])
    NED2cam = np.float32([[0, 1, 0],
                          [0, 0, 1],
                          [1, 0, 0]])
    world2cam = NED2cam @ rm.qvec2rotmat(frame_qvec).T @ world2NED
    cam_tvec = - world2cam  @ frame_tvec
    cam_qvec = rm.rotmat2qvec(world2cam)
    return cam_qvec, cam_tvec


nicolas's avatar
nicolas committed
56
57
58
59
60
61
def set_gps(frames_list, metadata, image_path):
    for frame in frames_list:
        relative = str(frame.relpath(image_path))
        row = metadata[metadata["image_path"] == relative]
        if len(row) > 0:
            row = row.iloc[0]
62
63
64
65
66
            if row["location_valid"]:
                set_gps_location(frame,
                                 lat=row["location_latitude"],
                                 lng=row["location_longitude"],
                                 altitude=row["location_altitude"])
nicolas's avatar
nicolas committed
67
68
69
70
71
72


def get_georef(metadata):
    relevant_data = metadata[["location_valid", "image_path", "x", "y", "z"]]
    path_list = []
    georef_list = []
Clément Pinard's avatar
Clément Pinard committed
73
    for _, (loc_valid, path, x, y, alt) in relevant_data.iterrows():
nicolas's avatar
nicolas committed
74
        path_list.append(path)
Clément Pinard's avatar
Clément Pinard committed
75
        if loc_valid:
nicolas's avatar
nicolas committed
76
77
78
79
            georef_list.append("{} {} {} {}\n".format(path, x, y, alt))
    return georef_list, path_list


Clement Pinard's avatar
Clement Pinard committed
80
def optimal_sample(metadata, num_frames, orientation_weight, resolution_weight):
81
    valid_metadata = metadata[~metadata["sampled"]].dropna()
Clément Pinard's avatar
Clément Pinard committed
82
83
    if len(valid_metadata) == 0:
        return metadata
84
85
86
87
88
89
    XYZ = valid_metadata[["x", "y", "z"]].values
    axis_angle = valid_metadata[["frame_quat_x", "frame_quat_y", "frame_quat_z"]].values
    if True in valid_metadata["indoor"].unique():
        # We have indoor videos, without absolute positions. We assume each video is very far
        # from the other ones. As such we will have an optimal subsampling of each video
        # It won't leverage video proximity from each other but it's better than nothing
Clement Pinard's avatar
Clement Pinard committed
90
        diameter = (XYZ.max(axis=0) - XYZ.min(axis=0))
91
92
93
94
        indoor_videos = valid_metadata.loc[valid_metadata["indoor"]]["video"].unique()
        new_centroids = 2 * diameter * np.linspace(0, 10, len(indoor_videos)).reshape(-1, 1)
        for centroid, v in zip(new_centroids, indoor_videos):
            video_index = (valid_metadata["video"] == v).values
Clement Pinard's avatar
Clement Pinard committed
95
96
            XYZ[video_index] += centroid

97
    frame_size = valid_metadata["video_quality"].values
Clement Pinard's avatar
Clement Pinard committed
98
99
100
101
102
103
104
105
    weighted_point_cloud = np.concatenate([XYZ, orientation_weight * axis_angle], axis=1)

    if resolution_weight == 0:
        weights = None
    else:
        weights = frame_size ** resolution_weight
    km = KMeans(n_clusters=num_frames).fit(weighted_point_cloud, sample_weight=weights)
    closest, _ = pairwise_distances_argmin_min(km.cluster_centers_, weighted_point_cloud)
106
    metadata.at[valid_metadata.index[closest], "sampled"] = True
Clement Pinard's avatar
Clement Pinard committed
107
108
109
    return metadata


110
def register_new_cameras(cameras_dataframe, database, camera_dict):
Clement Pinard's avatar
Clement Pinard committed
111
    camera_ids = []
Clément Pinard's avatar
Clément Pinard committed
112
113
114
115
116
    for _, row in cameras_dataframe.iterrows():
        w, h, hfov, vfov, camera_model = row.reindex(["width", "height", "picture_hfov", "picture_vfov", "camera_model"])
        prior_focal_length = False
        single_focal = ('SIMPLE' in camera_model) or ('RADIAL' in camera_model)
        if hfov != 0:
117
            fx = w / (2 * np.tan(hfov * np.pi/360))
Clément Pinard's avatar
Clément Pinard committed
118
119
120
121
122
            # If the model is not single focal, only knowing hfov is not enough, you also need to know vfov
            prior_focal_length = single_focal
        else:
            fx = w / 2  # As if hfov was 90 degrees
        if vfov != 0:
123
            fy = h / (2 * np.tan(vfov * np.pi/360))
Clément Pinard's avatar
Clément Pinard committed
124
            prior_focal_length = True
125
        else:
Clément Pinard's avatar
Clément Pinard committed
126
            fy = w / 2  # As if vfov was 90 degrees
127
128
        model_id = rm.CAMERA_MODEL_NAMES[camera_model].model_id
        num_params = rm.CAMERA_MODEL_NAMES[camera_model].num_params
Clément Pinard's avatar
Clément Pinard committed
129
130
131
132
133
        if ('SIMPLE' in camera_model) or ('RADIAL' in camera_model):
            params = np.array([fx, w/2, h/2] + [0] * (num_params - 3))
        else:
            params = np.array([fx, fy, w/2, h/2] + [0] * (num_params - 4))
        db_id = database.add_camera(model_id, int(w), int(h), params, prior_focal_length=prior_focal_length)
Clement Pinard's avatar
Clement Pinard committed
134
135
        camera_ids.append(db_id)
        camera_dict[db_id] = rm.Camera(id=db_id,
136
                                       model=camera_model,
Clement Pinard's avatar
Clement Pinard committed
137
138
139
140
141
142
143
144
                                       width=int(w),
                                       height=int(h),
                                       params=params)
    ids_series = pd.Series(camera_ids)
    return cameras_dataframe.set_index(ids_series)


def process_video_folder(videos_list, existing_pictures, output_video_folder, image_path, system, centroid,
Clément Pinard's avatar
Clément Pinard committed
145
                         thorough_db, fps=1, total_frames=500, orientation_weight=1, resolution_weight=1,
146
147
                         output_colmap_format="bin", save_space=False, include_lowfps_thorough=False,
                         max_sequence_length=1000, **env):
Clement Pinard's avatar
Clement Pinard committed
148
149
150
151
152
    proj = Proj(system)
    final_metadata = []
    video_output_folders = {}
    images = {}
    colmap_cameras = {}
153
    tempfile_database = Path(tempfile.NamedTemporaryFile().name)
Clément Pinard's avatar
Clément Pinard committed
154
155
    if thorough_db.isfile():
        thorough_db.copy(thorough_db.stripext() + "_backup.db")
Clement Pinard's avatar
Clement Pinard committed
156
    path_lists_output = {}
157
    database = db.COLMAPDatabase.connect(thorough_db)
Clement Pinard's avatar
Clement Pinard committed
158
159
160
    database.create_tables()

    print("extracting metadata for {} videos...".format(len(videos_list)))
161
    videos_summary = {"anafi": {"indoor": 0, "outdoor": 0}, "generic": 0}
Clément Pinard's avatar
Clément Pinard committed
162
163

    indoor_video_diameters = {}
Clement Pinard's avatar
Clement Pinard committed
164
    for v in tqdm(videos_list):
165
        width, height, framerate, num_frames = env["ffmpeg"].get_size_and_framerate(v)
Clément Pinard's avatar
Clément Pinard committed
166
        video_output_folder = output_video_folder / "{}x{}".format(width, height) / v.stem
Clement Pinard's avatar
Clement Pinard committed
167
168
169
        video_output_folder.makedirs_p()
        video_output_folders[v] = video_output_folder

170
171
172
173
174
        try:
            metadata = am.extract_metadata(v.parent, v, env["pdraw"], proj,
                                           width, height, framerate)
            metadata["model"] = "anafi"
            metadata["camera_model"] = "PINHOLE"
Clément Pinard's avatar
Clément Pinard committed
175
176
            raw_positions = metadata[["x", "y", "z"]]
            video_displacement_diameter = np.linalg.norm(raw_positions.values.max(axis=0) - raw_positions.values.min(axis=0))
177
178
            if metadata["indoor"].iloc[0]:
                videos_summary["anafi"]["indoor"] += 1
Clément Pinard's avatar
Clément Pinard committed
179
                indoor_video_diameters[video_displacement_diameter] = v
180
181
182
183
184
185
            else:
                videos_summary["anafi"]["outdoor"] += 1
                raw_positions = metadata[["x", "y", "z"]]
                if centroid is None:
                    '''No centroid (possibly because there was no georeferenced lidar model in the first place)
                    set it as the first valid GPS position of the first outdoor video'''
Clément Pinard's avatar
Clément Pinard committed
186
                    centroid = raw_positions[metadata["location_valid"]].iloc[0].values
187
                zero_centered_positions = raw_positions.values - centroid
Clément Pinard's avatar
bug fix    
Clément Pinard committed
188
189
190
191
                radius = np.max(np.abs(zero_centered_positions))
                if radius > 1000:
                    print("Warning, your positions coordinates are most likely too high, have you configured the right GPS system ?")
                    print("It should be the same as the one used for the Lidar point cloud")
192
193
194
195
196
197
198
199
200
201
202
203
                metadata["x"], metadata["y"], metadata["z"] = zero_centered_positions.transpose()
        except Exception:
            # No metadata found, construct a simpler dataframe without location
            metadata = pd.DataFrame({"video": [v] * num_frames})
            metadata["height"] = height
            metadata["width"] = width
            metadata["framerate"] = framerate
            metadata["video_quality"] = height * width / framerate
            metadata['frame'] = metadata.index + 1
            # timestemp is in microseconds
            metadata['time'] = 1e6 * metadata.index / framerate
            metadata['indoor'] = True
Clément Pinard's avatar
Clément Pinard committed
204
            metadata['location_valid'] = False
205
            metadata["model"] = "generic"
Clément Pinard's avatar
Clément Pinard committed
206
207
208
            metadata["camera_model"] = "PINHOLE"
            metadata["picture_hfov"] = 0
            metadata["picture_vfov"] = 0
Clément Pinard's avatar
bug fix    
Clément Pinard committed
209
210
211
212
            metadata["frame_quat_w"] = np.NaN
            metadata["frame_quat_x"] = np.NaN
            metadata["frame_quat_y"] = np.NaN
            metadata["frame_quat_z"] = np.NaN
Clément Pinard's avatar
Clément Pinard committed
213
214
215
            metadata["x"] = np.NaN
            metadata["y"] = np.NaN
            metadata["z"] = np.NaN
216
            videos_summary["generic"] += 1
Clément Pinard's avatar
Clément Pinard committed
217
        metadata["num_frames"] = num_frames
218
219
220
221
        if include_lowfps_thorough:
            by_time = metadata.set_index(pd.to_datetime(metadata["time"], unit="us"))
            by_time_lowfps = by_time.resample("{:.3f}S".format(1/fps)).first()
            metadata["sampled"] = by_time["time"].isin(by_time_lowfps["time"]).values
Clément Pinard's avatar
Clément Pinard committed
222
        else:
223
224
            metadata["sampled"] = False
        final_metadata.append(metadata)
Clement Pinard's avatar
Clement Pinard committed
225
    final_metadata = pd.concat(final_metadata, ignore_index=True)
226
227
228
    print("{} outdoor anafi videos".format(videos_summary["anafi"]["outdoor"]))
    print("{} indoor anafi videos".format(videos_summary["anafi"]["indoor"]))
    print("{} generic videos".format(videos_summary["generic"]))
Clement Pinard's avatar
Clement Pinard committed
229

Clément Pinard's avatar
Clément Pinard committed
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
    if(videos_summary["anafi"]["outdoor"] == 0 and videos_summary["anafi"]["indoor"] > 0):
        # We have no GPS data but we have navdata, which will help rescale the colmap model
        # Take the longest video and do as if the GPS was valid
        longest_video = indoor_video_diameters[max(indoor_video_diameters)]
        print("Only indoor videos used, will use {} for COLMAP rescaling".format(longest_video))
        video_index = final_metadata["video"] == longest_video
        if include_lowfps_thorough:
            # We already added frames to be sampled so we just copy the boolean to the "location_valid" column
            final_metadata.loc[video_index, "location_valid"] = final_metadata.loc[video_index, "sampled"]
        else:
            # Take frames at lowfps, add it to the thorough photogrammetry and mark their location as valid
            video_md = final_metadata[video_index]
            by_time = video_md.set_index(pd.to_datetime(video_md["time"], unit="us"))
            by_time_lowfps = by_time.resample("{:.3f}S".format(1/fps)).first()
            to_georef = by_time["time"].isin(by_time_lowfps["time"]).values
            final_metadata.loc[video_index, "sampled"] = to_georef
            final_metadata.loc[video_index, "location_valid"] = to_georef

Clement Pinard's avatar
Clement Pinard committed
248
249
    print("{} frames in total".format(len(final_metadata)))

250
251
252
    cam_fields = ["width", "height", "framerate", "picture_hfov", "picture_vfov", "camera_model"]
    cameras_dataframe = final_metadata[final_metadata["model"] == "anafi"][cam_fields].drop_duplicates()
    cameras_dataframe = register_new_cameras(cameras_dataframe, database, colmap_cameras)
Clement Pinard's avatar
Clement Pinard committed
253
254
255
    final_metadata["camera_id"] = 0
    for cam_id, row in cameras_dataframe.iterrows():
        final_metadata.loc[(final_metadata[cam_fields] == row).all(axis=1), "camera_id"] = cam_id
256
257
258
    if any(final_metadata["model"] == "generic"):
        print("Undefined remaining cameras, assigning generic models to them")
        generic_frames = final_metadata[final_metadata["model"] == "generic"]
Clément Pinard's avatar
Clément Pinard committed
259
260
        generic_cam_fields = cam_fields + ["video"]
        generic_cameras_dataframe = generic_frames[generic_cam_fields]
261
262
263
264
265
266
        fixed_camera = True
        if fixed_camera:
            generic_cameras_dataframe = generic_cameras_dataframe.drop_duplicates()
        generic_cameras_dataframe = register_new_cameras(generic_cameras_dataframe, database, colmap_cameras)
        if fixed_camera:
            for cam_id, row in generic_cameras_dataframe.iterrows():
Clément Pinard's avatar
Clément Pinard committed
267
                final_metadata.loc[(final_metadata[generic_cam_fields] == row).all(axis=1), "camera_id"] = cam_id
268
269
270
271
272
273
274
        else:
            final_metadata.loc[generic_frames.index, "camera_id"] = generic_cameras_dataframe.index
        cameras_dataframe = cameras_dataframe.append(generic_cameras_dataframe)
    print("Cameras : ")
    print(cameras_dataframe)

    to_extract = total_frames - len(existing_pictures) - sum(final_metadata["sampled"])
Clement Pinard's avatar
Clement Pinard committed
275

Clément Pinard's avatar
Clément Pinard committed
276
    if to_extract <= 0:
277
        pass
Clément Pinard's avatar
Clément Pinard committed
278
    elif to_extract < len(final_metadata):
Clement Pinard's avatar
Clement Pinard committed
279
280
281
282
283
284
        print("subsampling based on K-Means, to get {}"
              " frames from videos, for a total of {} frames".format(to_extract, total_frames))
        final_metadata = optimal_sample(final_metadata, total_frames - len(existing_pictures),
                                        orientation_weight,
                                        resolution_weight)
        print("Done.")
Clément Pinard's avatar
Clément Pinard committed
285
286
    else:
        final_metadata["sampled"] = True
Clement Pinard's avatar
Clement Pinard committed
287

288
    print("Constructing COLMAP model with {:,} frames".format(sum(final_metadata["sampled"])))
Clement Pinard's avatar
Clement Pinard committed
289

290
291
292
293
    database.commit()
    thorough_db.copy(tempfile_database)
    temp_database = db.COLMAPDatabase.connect(tempfile_database)

Clement Pinard's avatar
Clement Pinard committed
294
    final_metadata["image_path"] = ""
295
296
    final_metadata["db_id"] = -1
    for current_id, row in tqdm(final_metadata.iterrows(), total=len(final_metadata)):
Clement Pinard's avatar
Clement Pinard committed
297
298
299
        video = row["video"]
        frame = row["frame"]
        camera_id = row["camera_id"]
Clément Pinard's avatar
Clément Pinard committed
300
        current_image_path = video_output_folders[video].relpath(image_path) / video.stem + "_{:05d}.jpg".format(frame)
Clement Pinard's avatar
Clement Pinard committed
301

302
303
304
        final_metadata.at[current_id, "image_path"] = current_image_path
        db_image_id = temp_database.add_image(current_image_path, int(camera_id))
        final_metadata.at[current_id, "db_id"] = db_image_id
Clement Pinard's avatar
Clement Pinard committed
305
306
307
308
309
310

        if row["sampled"]:
            frame_qvec = row[["frame_quat_w",
                              "frame_quat_x",
                              "frame_quat_y",
                              "frame_quat_z"]].values
311
312
            if True in pd.isnull(frame_qvec):
                frame_qvec = np.array([1, 0, 0, 0])
nicolas's avatar
nicolas committed
313
314
            x, y, z = row[["x", "y", "z"]]
            frame_tvec = np.array([x, y, z])
Clement Pinard's avatar
Clement Pinard committed
315
316
317
318
319
320
            if row["location_valid"]:
                frame_gps = row[["location_longitude", "location_latitude", "location_altitude"]]
            else:
                frame_gps = np.full(3, np.NaN)

            world_qvec, world_tvec = world_coord_from_frame(frame_qvec, frame_tvec)
321
322
323
324
            database.add_image(current_image_path, int(camera_id), prior_t=frame_gps, image_id=db_image_id)
            images[db_image_id] = rm.Image(id=db_image_id, qvec=world_qvec, tvec=world_tvec,
                                           camera_id=camera_id, name=current_image_path,
                                           xys=[], point3D_ids=[])
Clement Pinard's avatar
Clement Pinard committed
325
326
327

    database.commit()
    database.close()
328
329
    temp_database.commit()
    temp_database.close()
Clement Pinard's avatar
Clement Pinard committed
330
331
332
    rm.write_model(colmap_cameras, images, {}, output_video_folder, "." + output_colmap_format)
    print("COLMAP model created")

nicolas's avatar
nicolas committed
333
334
335
336
    thorough_georef, thorough_paths = get_georef(final_metadata[final_metadata["sampled"]])
    path_lists_output["thorough"] = {}
    path_lists_output["thorough"]["frames"] = thorough_paths
    path_lists_output["thorough"]["georef"] = thorough_georef
Clement Pinard's avatar
Clement Pinard committed
337
338
339
340
341

    print("Extracting frames from videos")

    for v in tqdm(videos_list):
        video_metadata = final_metadata[final_metadata["video"] == v]
nicolas's avatar
nicolas committed
342
        by_time = video_metadata.set_index(pd.to_datetime(video_metadata["time"], unit="us"))
Clement Pinard's avatar
Clement Pinard committed
343
344
        video_folder = video_output_folders[v]
        video_metadata.to_csv(video_folder/"metadata.csv")
nicolas's avatar
nicolas committed
345
346
347
348
349
        path_lists_output[v] = {}
        video_metadata_1fps = by_time.resample("{:.3f}S".format(1/fps)).first()
        georef, frame_paths = get_georef(video_metadata_1fps)
        path_lists_output[v]["frames_lowfps"] = frame_paths
        path_lists_output[v]["georef_lowfps"] = georef
Clément Pinard's avatar
Clément Pinard committed
350
        num_chunks = len(video_metadata) // max_sequence_length + 1
351
352
353
354
355
356
357
        chunks = [list(frames) for frames in np.array_split(video_metadata["image_path"],
                                                            num_chunks)]
        # Add some overlap between chunks, in order to ease the model merging afterwards
        for chunk, next_chunk in zip(chunks, chunks[1:]):
            chunk.extend(next_chunk[:10])
        path_lists_output[v]["frames_full"] = chunks

Clement Pinard's avatar
Clement Pinard committed
358
        if save_space:
Clément Pinard's avatar
Clément Pinard committed
359
360
            frame_ids = set(video_metadata[video_metadata["sampled"]]["frame"].values) | \
                set(video_metadata_1fps["frame"].values)
361
            frame_ids = sorted(list(frame_ids))
Clément Pinard's avatar
Clément Pinard committed
362
            if len(frame_ids) > 0:
nicolas's avatar
nicolas committed
363
                extracted_frames = env["ffmpeg"].extract_specific_frames(v, video_folder, frame_ids)
Clement Pinard's avatar
Clement Pinard committed
364
        else:
nicolas's avatar
nicolas committed
365
366
            extracted_frames = env["ffmpeg"].extract_images(v, video_folder)
        set_gps(extracted_frames, video_metadata, image_path)
Clement Pinard's avatar
Clement Pinard committed
367
368
369
370
371
372
373
374

    return path_lists_output, video_output_folders


if __name__ == '__main__':
    args = parser.parse_args()
    env = vars(args)
    env["videos_list"] = sum((list(args.video_folder.walkfiles('*{}'.format(ext))) for ext in args.vid_ext), [])
Clément Pinard's avatar
Clément Pinard committed
375
    output_video_folder = args.colmap_img_root / "Videos"
Clement Pinard's avatar
Clement Pinard committed
376
    output_video_folder.makedirs_p()
Clément Pinard's avatar
Clément Pinard committed
377
    env["image_path"] = args.colmap_img_root
Clement Pinard's avatar
Clement Pinard committed
378
    env["output_video_folder"] = output_video_folder
Clément Pinard's avatar
Clément Pinard committed
379
    env["existing_pictures"] = sum((list(args.colmap_img_root.walkfiles('*{}'.format(ext))) for ext in args.pic_ext), [])
Clément Pinard's avatar
Clément Pinard committed
380
381
382
    env["pdraw"] = PDraw(args.nw, verbose=args.verbose)
    env["ffmpeg"] = FFMpeg(verbose=args.verbose)
    env["output_colmap_format"] = args.output_format
Clement Pinard's avatar
Clement Pinard committed
383
384
385
386
387
388
389
390
391

    if args.centroid_path is not None:
        centroid = np.loadtxt(args.centroid_path)
    else:
        centroid = np.zeros(3)
    env["centroid"] = centroid
    lists, extracted_video_folders = process_video_folder(**env)

    if lists is not None:
Clément Pinard's avatar
Clément Pinard committed
392
393
394
        with open(args.colmap_img_root/"video_frames_for_thorough_scan.txt", "w") as f:
            f.write("\n".join(lists["thorough"]["frames"]) + "\n")
        with open(args.colmap_img_root/"georef.txt", "w") as f:
Clément Pinard's avatar
Clément Pinard committed
395
            f.write("\n".join(lists["thorough"]["georef"]))
Clement Pinard's avatar
Clement Pinard committed
396
        for v in env["videos_list"]:
Clément Pinard's avatar
Clément Pinard committed
397
398
399
400
401
402
403
404
405
            video_folder = extracted_video_folders[v]
            with open(video_folder / "lowfps.txt", "w") as f:
                f.write("\n".join(lists[v]["frames_lowfps"]) + "\n")
            with open(video_folder / "georef.txt", "w") as f:
                f.write("\n".join(lists["thorough"]["georef"]) + "\n")
                f.write("\n".join(lists[v]["georef_lowfps"]) + "\n")
            for j, l in enumerate(lists[v]["frames_full"]):
                with open(video_folder / "full_chunk_{}.txt".format(j), "w") as f:
                    f.write("\n".join(l) + "\n")