prepare_workspace.py 4.22 KB
Newer Older
Clément Pinard's avatar
Clément Pinard committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
def check_input_folder(path, with_lidar=True):
    def print_error_string():
        print("Error, bad input folder structure")
        print("Expected :")
        if with_lidar:
            print(str(path/"Lidar"))
        print(str(path/"Pictures"))
        print(str(path/"Videos"))
        print()
        print("but got :")
        print("\n".join(str(d) for d in path.dirs()))

    expected_folders = ["Pictures", "Videos"]
    if with_lidar:
        expected_folders.append("Lidar")
    if all((path/d).isdir() for d in expected_folders):
        return
    else:
        print_error_string()


def prepare_workspace(path, env, with_lidar=True):
    if with_lidar:
        env["lidar_path"] = path / "Lidar"
        env["lidar_mlp"] = env["workspace"] / "lidar.mlp"
        env["with_normals_path"] = env["lidar_path"] / "with_normals.ply"
        env["occlusion_ply"] = env["lidar_path"] / "occlusion_model.ply"
Clément Pinard's avatar
Clément Pinard committed
28
        env["splats_ply"] = env["lidar_path"] / "splats_model.ply" if env["splats"] else None
Clément Pinard's avatar
Clément Pinard committed
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
        env["occlusion_mlp"] = env["lidar_path"] / "occlusions.mlp"
        env["splats_mlp"] = env["lidar_path"] / "splats.mlp"
        env["matrix_path"] = env["workspace"] / "matrix_thorough.txt"
    else:
        env["occlusion_ply"] = path / "occlusion_model.ply"
        env["splats_ply"] = path / "splats_model.ply"

    env["image_path"] = path / "Pictures"
    env["mask_path"] = path / "Masks"
    env["video_path"] = path / "Pictures" / "Videos"
    env["thorough_recon"] = path / "Thorough"
    env["georef_recon"] = env["thorough_recon"] / "georef"
    env["georef_full_recon"] = env["thorough_recon"] / "georef_full"
    env["dense_workspace"] = env["thorough_recon"]/"dense"
    env["video_recon"] = path / "Videos_reconstructions"
    env["aligned_mlp"] = env["workspace"] / "aligned_model.mlp"

    env["centroid_path"] = path / "centroid.txt"
    env["thorough_db"] = path / "scan_thorough.db"
    env["video_frame_list_thorough"] = env["image_path"] / "video_frames_for_thorough_scan.txt"
    env["georef_frames_list"] = env["image_path"] / "georef.txt"

    env["georefrecon_ply"] = env["georef_recon"] / "georef_reconstruction.ply"
    env["indexed_vocab_tree"] = env["workspace"] / "vocab_tree_thorough.bin"


def prepare_video_workspace(video_name, video_frames_folder,
                            raw_output_folder, converted_output_folder,
                            video_recon, video_path, **env):
    video_env = {video_name: video_name,
                 video_frames_folder: video_frames_folder}
    relative_path_folder = video_frames_folder.relpath(video_path)
    video_env["lowfps_db"] = video_frames_folder / "video_low_fps.db"
    video_env["metadata"] = video_frames_folder / "metadata.csv"
    video_env["lowfps_image_list_path"] = video_frames_folder / "lowfps.txt"
    video_env["chunk_image_list_paths"] = sorted(video_frames_folder.files("full_chunk_*.txt"))
Clément Pinard's avatar
Clément Pinard committed
65
    video_env["chunk_dbs"] = [video_frames_folder / fp.stem + ".db" for fp in video_env["chunk_image_list_paths"]]
Clément Pinard's avatar
Clément Pinard committed
66
67
68
69
70
71
72
73
74
    colmap_root = video_recon / relative_path_folder
    video_env["colmap_models_root"] = colmap_root
    video_env["full_model"] = colmap_root
    video_env["lowfps_model"] = colmap_root / "lowfps"
    num_chunks = len(video_env["chunk_image_list_paths"])
    video_env["chunk_models"] = [colmap_root / "chunk_{}".format(index) for index in range(num_chunks)]
    video_env["final_model"] = colmap_root / "final"
    output = {}
    output["images_root_folder"] = raw_output_folder / "images"
Clément Pinard's avatar
Clément Pinard committed
75
    output["video_frames_folder"] = output["images_root_folder"] / "Videos" / relative_path_folder
Clément Pinard's avatar
Clément Pinard committed
76
77
78
79
    output["model_folder"] = raw_output_folder / "models" / relative_path_folder
    output["interpolated_frames_list"] = output["model_folder"] / "interpolated_frames.txt"
    output["final_model"] = output["model_folder"] / "final"
    output["kitti_format_folder"] = converted_output_folder / "KITTI" / relative_path_folder
Clément Pinard's avatar
Clément Pinard committed
80
    output["viz_folder"] = converted_output_folder / "visualization" / relative_path_folder
Clément Pinard's avatar
Clément Pinard committed
81
82
    video_env["output_env"] = output
    video_env["already_localized"] = env["resume_work"] and output["model_folder"].isdir()
Clément Pinard's avatar
Clément Pinard committed
83
    video_env["GT_already_done"] = env["resume_work"] and (raw_output_folder / "ground_truth_depth" / video_name.stem).isdir()
Clément Pinard's avatar
Clément Pinard committed
84
    return video_env